
IOAA 2023 General Marking Scheme

Using incorrect physical concept (despite correct answers) No points given
Giving correct answer without detailed calculation Deduct 50% of the marks for

that part
Minor mistakes in the calculations, e.g., wrong signs, sym-
bols, substitutions

Deduct 20% of the marks for
that part

Units missing from final answers Deduct 0.5 pts
Too few or too many significant figures in the final answer Deduct 0.5 pts
Error resulting from another error in an earlier part for
which the student already lost marks, if the answer is
physically reasonable.

Full points (i.e., no deduc-
tions)

Error resulting from another error in an earlier part, where
the student should have realised the answer was physically
unreasonable.

Deduct 20% of the marks for
that part

For example, if due to an error in an earlier part, the student calculates the mass of a star as
2.5×1030 kg instead of 2×1030 kg, they will only lose marks for the earlier part. However, if, for
the same reason, a student calculates the mass as 2 × 1025 kg, they should realize this is wrong
(a few times the Earth’s mass) and thus should lose some marks for this part as well.
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Table of Constants
Fundamental constants
Speed of light in vacuum c = 2.998× 108 ms−1

Planck constant h = 6.626× 10−34 J s

Boltzmann constant kB = 1.381× 10−23 JK−1

Stefan-Boltzmann constant σ = 5.670× 10−8 Wm−2K−4

Elementary charge e = 1.602× 10−19 C

Universal gravitational constant G = 6.674× 10−11 Nm2 kg−2

Universal electric constant ϵ0 = 8.854× 10−12 m−3kg−1s4A2

Universal gas constant R = 8.315 Jmol−1K−1

Avogadro constant NA = 6.022× 1023 mol−1

Wien’s displacement constant b = λmT = 2.898× 10−3 mK

Mass of electron me = 9.109× 10−31 kg

Mass of proton mp = 1.673× 10−27 kg

Mass of neutron mn = 1.675× 10−27 kg

Mass of Helium nucleus mHe = 6.645× 10−27 kg

Atomic mass unit (a.m.u., Dalton) = 1.661× 10−27 kg

Astronomical data
Hubble constant H0 = 70 km s−1Mpc−1

North Ecliptic Pole (J2000.0) (αE, δE) (18h00m00s,+66◦33′39′′)
North Galactic Pole (J2000.0) (αG, δG) (12h51m26s,+27◦07′42′′)
1 jansky 1 Jy = 10−26 Wm−2Hz−1

1 parsec 1 pc = 3.086× 1016 m
206 265 au
3.262 ly

1 astronomical unit (au) 1 au = 1.496× 1011 m

1 sidereal day TSD = 23.93444 h
23h56m04s

1 tropical year = 365.2422 solar days
1 sidereal year = 365.2564 solar days

Gauss’s formulae
Spherical law of cosines: cos a = cos b cos c+ sin b sin c cosA
Spherical law of sines: sinA

sin a = sinB
sin b = sinC

sin c

Approximations
(1 + x)n ≈ 1 + nx
(1 + x)(1 + y) ≈ 1 + x+ y if x ≪ 1 and y ≪ 1
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The Sun
Solar luminosity L⊙ = 3.826× 1026 W

Apparent angular diameter of Sun θ⊙ = 32′

Effective temperature of Sun Teff,⊙ = 5778K
Apparent visual magnitude = -26.75
Absolute visual magnitude = +4.82
Apparent bolometric magnitude = -26.83
Absolute bolometric magnitude = +4.74
Distance of the Sun from the Galactic centre ≈ 8 kpc

The Earth and Moon
Obliquity of the ecliptic (Earth) ϵ = 23.5′

Platonic year (period of precession of Earth’s axis) = 25 765 years
Apparent visual magnitude of full Moon = −12.74

Apparent angular diameter of Moon θL = 31′

Inclination of the lunar orbit to the ecliptic = 05◦08′43′′

Inclination of the lunar equator to its orbital plane = 6.687◦

Lunar sidereal month TSL = 27.321661 d
655.71986 h

Synodic month = 29.530589 d
Tropical month = 27.321582 d
Anomalistic month = 27.554550 d
Draconic month = 27.212221 d

The Solar System
Object Mean radius Mass Semimajor Eccentricity

[km] [kg] axis [au]
Sun 695 700 1.988× 1030 — —
Mercury 2 440 3.301× 1023 0.387 0.206
Venus 6 052 4.867× 1024 0.723 0.007
Earth 6 378 5.972× 1024 1.000 0.016 710
Moon 1 737 7.346× 1022 3.844× 105 km 0.054 900

(range 0.026− 0.077)
Mars 3 390 6.417× 1023 1.524 0.093
Jupiter 69 911 1.898× 1027 5.203 0.048
Saturn 58 232 5.683× 1026 9.537 0.054
Uranus 25 362 8.681× 1025 19.189 0.047
Neptune 24 622 1.024× 1026 30.070 0.009
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Theory: instructions

• Do not touch envelopes until the start of the examination.

• The theoretical examination lasts for 5 hours and is worth a total of 250 marks.

• There are Answer Sheets for carrying out detailed work and Working Sheets for rough
work, which are already marked with your student code and question number.

• Use only the answer sheets for a particular question for your answer. Please
write only on the printed side of the sheet. Do not use the reverse side. If you
have written something on any sheet which you do not want to be evaluated, cross it out.

• Use as many mathematical expressions as you think may help the evaluator to better
understand your solutions. The evaluator may not understand your language. If it is
necessary to explain something in words, please use short phrases (if possible in English).

• You are not allowed to leave your work desk without permission. If you need any assistance
(malfunctioning calculator, need to visit a restroom, etc.), please draw the attention of the
supervisor.

• The beginning and end of the examination will be indicated by the supervisor. The
remaining time will be displayed on a clock.

• At the end of the examination you must stop writing immediately. Put everything back
in the envelope and leave it on the table.

• Once all envelopes are collected, your student guide will escort you out of the examination
room.

• A list of constants and useful relations are included in the envelope.

6



Theory 1: ‘Neptune’

Given that Neptune will be at opposition on 21 September 2024, calculate in which year Neptune
was last at opposition near the time of the northern-hemisphere spring equinox. Assume that
the orbits of Earth and Neptune are circular.

(5 points)

Solution

Using Kepler’s Third law and the semi-major axis (a = 30.070 au) of the orbit from the table
of constants, the sidereal period of Neptune’s orbit is:

PN = (a3)
1
2 =

√
27189.4 = 164.89 years (1 point)

The rest of the calculation can be done in (at least) two ways:

(1) ‘day counting’/‘date drift’ solution:

Since Neptune is an outer planet (relative to Earth), the synodic period S in years is given by:
1

S
=

1

1 year
− 1

PN
(1 point)

= 1− 1

164.89
= 1− 0.006065 = 0.99394

=⇒ S = 1/0.99394 = 1.006102 years (1 point)

=⇒ 1.006102× 365.2422 = 367.4708 solar days

Therefore the date of opposition drifts by:

D = 367.4708− 365.2422 = 2.2286 days/year (1 point)

The approximate date of the northern spring equinox is 20 March. The number of days between
21 September and 20 March = 185 days, therefore year of desired opposition is:

2024− (185/D) = 2024− 83 = 1941 (1 point)

If the student takes 21 March as the spring equinox, they get 184/D = 82.5 yr =⇒ 1942.

(2) ‘angular drift’ solution (more accurate)

As before, the synodic period of Neptune can be derived as:
1

S
=

1

1 year
− 1

PN
(1 point)

= 1− 1

164.89
=

163.89

164.89
=⇒ S =

164.89

163.89
years

Therefore the ecliptic longitude of Neptune at opposition drifts by (360◦/163.89)/year. We want
to find how many years it takes for the longitude of opposition to move by 180◦, i.e. for what t:

t× 360◦

163.89
= 180◦. (2 points)

=⇒ t = 163.89/2 = 81.95 years =⇒ 2024− 82 = 1942 (1 point)

We accept 1941 or 1942 for full points for calculations using the assumptions in the question. If
the student uses some other method which is conceptually correct and results in 1943 (the true
answer) they should also get full points.
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Table of spring equinoxes and oppositions of Neptune:

Year Equinox (UT) Opposition (UT) Coordinates of Neptune ∆T [days]
1940 Mar 20 18:42 Mar 14 21:08 11h40m +3◦28′ 5.9
1941 Mar 21 00:20 Mar 17 07:40 11h49m +2◦39′ 3.7
1942 Mar 21 06:11 Mar 19 18:12 11h57m +1◦50′ 1.5
1943 Mar 21 12:03 Mar 22 04:51 12h04m +1◦00′ −0.7
1944 Mar 20 17:49 Mar 23 15:29 12h13m +0◦11′ −2.9

2024 Mar 20 03:06 Sep 21 00:16 23h55m +1◦56′ −184.9

Taking into account all effects, the last opposition closest to the spring equinox was actually in
1943. 1942 results from the assumptions made in the question.
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Theory 2: ‘Magnetic field’

An emission line of wavelength λ = 600 nm was observed in the spectrum of a white dwarf.
Assuming that it originates from the interaction of an electron with a magnetic field,

(a) calculate the magnetic flux density of the field;

(b) estimate the wavelength of another spectral line, the discovery of which could confirm that
the lines originate from particles of a plasma interacting with the magnetic field.

(5 points)

Solution

(a) In a magnetic field, a charged particle moves along a circular path defined by the equality
of centrifugal and magnetic forces:

mv2/r = evB, (1 point)

where m is the mass, v velocity, r radius of the circle, e charge of the particle, and B magnetic
flux density.

For circular motion, v = 2πr/T , therefore T = 2πm/eB. The charged particle moving in
harmonic motion (i.e. along the circular path with constant velocity) emits a wave of wavelength
λ = cT = 2πmc/eB and thus B = 2πmc/eλ. (1 point)

Substituting the numerical values, including the mass and charge of the electron:

B = (2π × 9.109× 10−31 × 2.998× 108)/(1.602× 10−19 × 6× 10−7) ≈ 2× 104 T. (1 point)

Since λ is given to 1 s.f., the correct answer is 20 kT, however accept 17.9 kT or 18 kT. More
than 3 s.f. in the final answer loses points.

(b) In the plasma, besides electrons, only protons will be present in large quantities; protons will
emit energy at a wavelength larger in proportion to the mass ratio, i.e. 1836× larger (anything
within 1800–2000× =⇒ λ =1.08–1.20 mm is acceptable).

(2 points)
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Theory 3: ‘Microlensing’

A faint subdwarf star (I = 20.4mag) in the Galactic bulge was observed to brighten to I ′ =
15.2mag as a result of gravitational microlensing, allowing a high-resolution spectrum to be
obtained with the UVES spectrograph on the Very Large Telescope (mirror diameter 8.2 m).

Estimate the diameter of the telescope needed to obtain a spectrum of the same quality with
the same instrument and exposure time for this star at its normal apparent brightness.

(5 points)

Solution

Let F be the unmagnified flux of the star. During gravitational microlensing, the apparent flux
is magnified by a factor of A, thus using the formula relating magnitude to flux:

m1 −m2 = −2.5 log10

(
F1

F2

)
, (1 point)

I − I ′ = −2.5 log10

(
F

AF

)
= 2.5 logA (1 point)

and so
A = 102.08 ≈ 120. (1 point)

Let D be the effective mirror diameter of a telescope which would collect the same number of
photons in unit time from the unbrightened star as VLT from the brightened star. We have:

FD2 = AFD2
VLT, (1 point)

therefore:
D =

√
ADVLT ≈ 90m. (1 point)
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Theory 4: ‘Europa’

(a) Assuming that the ice covering the ocean on Jupiter’s moon Europa is 6 km thick, that
the surface temperature on the night side of Europa is 100 K and that the temperature
at the ice-water boundary is 273 K, calculate the total power corresponding to the heat
emitted from the interior of this moon.

(b) On Earth, the geothermal heat flux measured at the surface is 70 × 10−3Wm−2 and
originates mainly from radioactive decay. Is the heat emanating from the interior of
Europa more likely to come from radioactive decay or tidal forces? (Select the correct
answer on the answer sheet and show your working.)

(10 points)

Notes: the heat passing through a wall with a surface S and thickness d in time t is described
by the formula:

Q = λS∆Tt/d,

where λ stands for thermal conductivity and ∆T for the temperature difference.

The thermal conductivity of ice λ = 3Wm−1K−1. The mass and radius of Europa are 4.8 ×
1022 kg and 1561 km.

Solution

(a) From the formula Q = λS∆Tt/d, calculate the power P of the heat flowing through a unit
of the surface of ice:

P = Q/t = λS∆T/d. (1 point)

Approximating the ice crust of Europa as a ‘wall’, i.e. that the upper and lower surfaces are of
equal area S, we obtain the power per unit surface area: (1 point)

P/S = λ∆T/d.

Substituting the data we obtain

P/S = 86.5× 10−3Wm−2 ≈ 87mWm−2, (1 point)

similar to the value given for the Earth.
The total power emitted inside Europa is therefore equal to

4πR2
Eu (P/S) = 2.65× 1012W. (2 points)

(b) The total power emitted inside the Earth is equal to

4πR2
⊕ × 70× 10−3Wm−2 = 36× 1012W, (1 point)

which is about 13.5× larger than the value for Europa. However, the mass ratio is 124. For the
heat in Europa’s interior to have a purely radioactive origin, the matter on Europa would have
to contain an order of magnitude more radioactive elements per unit mass, which excludes this
explanation. (3 points)

Thus the answer must be tidal forces. (1 point)
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Theory 5: ‘Dark Energy’

Observations indicate that the expansion of the Universe is accelerating. Fluctuations of the
cosmic microwave background favour a flat (Euclidean) geometry, in which the total mass density
(i.e. density of matter and equivalent mass density of all forms of energy) should be equal to
the so-called critical density:

ρcr =
3H2

0

8πG
,

where H0 is the present value of the Hubble constant. However, the total density of matter
(luminous and dark) is estimated at

ρm,0 ≈ 2.8 · 10−27 kgm−3 .

To resolve this discrepancy, the standard cosmological model assumes that the Universe is filled
with a mysterious ‘dark energy’ of constant energy density EΛ.

Determine the value of EΛ and calculate for which redshift in the past the energy density
equivalent to matter was equal to the density of dark energy. Neglect the contribution of
electromagnetic radiation.

(12 points)

Solution

Substituting the values of H0 and G from the table of constants,

ρcr = 9.202× 10−27 kgm−3. (1 point)

In flat geometry we have:

ρm,0 +
EΛ

c2
= ρcr . (2 points)

Hence EΛ is given by:

EΛ = [ρcr − ρm,0] c
2 ≈ 5.756× 10−10 Jm−3. (1 points)

The linear scale of the Universe, a, is related to the cosmological redshift:

a(z) = a0/(1 + z) . (2 points)

Thus, the matter density, ρm, increases with redshift:

ρm(z) = ρm,0 (1 + z)3. (2 points)

We substitute the matter density, ρm by the energy density, Em, using the relationship E = mc2

Em(z) = ρm(z) c2 = ρm,0 (1 + z)3 c2. (2 points)

We finally get

zeq =

[
EΛ

ρm,0 c2

]1/3
− 1 ≈ 0.32 . (2 points)
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Theory 11: ‘X-ray emission from galaxy clusters’

Clusters of galaxies are strong X-ray sources. It has been established that the emission mech-
anism is thermal bremsstrahlung (free-free radiation) from a hot hydrogen and helium plasma
inside the cluster. The luminosity LX (in Watts) of each component of the plasma is described
by the formula:

LX = 6× 10−41NeNX T
1
2 V Z2

X ,

where the symbols represent:

X− Hydrogen (H) or Helium (He),
Ne− number density of electrons [m−3],
NX− number density of ions X [m−3],
ZX− atomic number of ion X,
T− temperature of the plasma [K],
V− volume occupied by the plasma [m3].

(a) Determine the total mass (in solar masses) of the plasma which emits the X-rays, assuming
that:

• the plasma is fully ionized with 1 helium ion for every 10 hydrogen ions;
• Ltotal = 1.0× 1037W,
• T = 80× 106 K,
• the plasma is uniformly distributed in a sphere of radius R = 500 kpc,
• self-absorption is negligible.

(16 points)

The photons of the cosmic microwave background (CMB) interact with plasma in a process
known as inverse Compton scattering. The CMB normally has a thermal blackbody spectrum
at a temperature of 2.73K. However, interaction with the plasma leads to distortion of the CMB
spectrum (known as the Sunyaev–Zeldovich effect).

(b) Estimate the mean free path of CMB photons in the plasma, i.e. the average distance
travelled by a photon before interacting with an electron. Express it in Mpc. The effective
cross section for photon–electron interactions is σ = 6.65× 10−29m2. (5 points)

(c) Estimate the typical energy of CMB photons. (3 points)

(d) The energy of CMB photons can be increased by a factor of up to (1 + β)/(1− β) due to
the inverse Compton scattering, where v = βc is the velocity of electrons. Estimate the
energy of scattered CMB photons. (6 points)

(Total: 30 points)
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Solution

Part (a)

Concentrations of electrons, Ne, and He nuclei, NHe, is related to the concentration of H nuclei,
NH:

NHe = 0.1NH (1 point)

Ne = NH + 2NHe = 1.2NH (2 points)

The total X-ray emission is a sum of the bremmstrahlung generated by interaction of electrons
with H and He nuclei:

L = 6 · 10−41Ne T
1
2 V (NH + Z2

HeNHe),

where ZHe = 2. The luminosity L is expressed by the concentration of H nuclei:

L = 6 · 10−41 1.2NH T
1
2 V 1.4NH,

=⇒ L = (10.08× 10−41) T
1
2 V N2

H ≈ 10−40 T
1
2 V N2

H. (3 points)

The volume V is given by:

V =
4

3
π R3 = 1.54 · 1067 m3. (3 points)

Thus, the concentration of NH:

NH =

(
L

10−40 T
1
2 V

)1/2

≈ 8.48 × 102 m−3. (3 points)

To obtain the total mass of the plasma, M , one should multiply the volume V by the the sum
of H and He mass densities:

M = V (NHmH + NHemHe) = 3.03× 1043 kg ≈ 1.52 × 1013M⊙. (4 points)

where mH and mHe are the masses of hydrogen and helium atoms.

Part (b)

Let L be the mean free path of a photon. The number of electrons in a cylinder with a cross
section area of σ and a length of L equals

N = nLσ = 1 =⇒ L = 1/(nσ).

Assuming n = Ne = 1.2NH = 1.018× 103m−3, we get

L =
1

1.018× 103 · 6.65× 10−29
= 1.48× 1025m = 4.79× 108 pc ≈ 500Mpc. (5 points)

(The radius of the cluster is ∼ 1000 times smaller than L, so the interactions between the CMB
photons and hot electrons are rare.)

Part (c)

Using Wien’s law,

λ =
b

T
=

2.898× 10−3

2.73
= 1.07× 10−3 m

=⇒ E0 =
hc

λ
= 1.85× 10−22 J (4 points)
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Part (d)

We first have to estimate the typical velocity ve of electrons using the formula for the kinetic
energy of the particles in a gas.

1

2
mv2 =

3

2
kT =⇒ ve =

√
3kT

me

∴ ve =

√
3 · 1.381× 10−23 · 8× 107

9.109× 10−31
= 6.032× 107 ms−1 = 0.202c

(3 points)

The energy of upscattered photons is:

E′ =
1 + β

1− β
E0 ≈ 1.5E0 = 2.78× 10−22 J. (2 points)

Note: The formula for the kinetic energy of particles in an ideal gas remains valid even at such
high temperatures. This is because

x =
mec

2

kT
=

9.109× 10−31 · (2.998× 108)2

1.381× 10−23 · 8× 107
= 74.1 ≫ 1,

and the electrons can be treated as non-relativistic. The full relativistic formula for the rms
velocity of particles in an ideal gas is

< v2e >=
xc2

K2(x)

∫ ∞

0

sinh4 ϕ

coshϕ
e−x coshϕdϕ,

where K2(x) is a modified Bessel function of the second kind. It can be shown that for x = 74.1
this formula yields

√
< v2e > = 0.198c, which is virtually identical to the prediction of the

non-relativistic formula.
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Theory 12: ‘DART’

The Double Asteroid Redirection Test (DART) was a NASA mission to evaluate a method of
planetary defense against near-Earth objects. The spacecraft hit Dimorphos, a moon of the
asteroid Didymos, to study how the impact affected its orbit.

(a) Calculate the expected orbital period change (in minutes), assuming that the collision was
head-on, central, and perfectly inelastic.

Assume that before the impact Dimorphos orbited Didymos on a circular orbit with a
period of P = 11.92 h. The masses of Dimorphos and Didymos are m = 4.3× 109 kg and
M = 5.6 × 1011 kg, respectively. The mass and speed of the DART spacecraft relative to
Dimorphos at a moment of impact were ms = 580 kg and vs = 6.1 km s−1. Neglect the
gravitational influence of other bodies.

(20 points)

(b) In reality, the orbital period of Dimorphos was observed to be changed by ∆P0 = −33 min.
This is due to the momentum transfer associated with the recoil of the ejected debris: the
spacecraft was absorbed by the asteroid, but the impact excavated some material from
the asteroid and ejected it into space. Calculate the momentum of the ejected debris and
express it as a fraction of the momentum of Dimorphos before the collision. You can
assume that the mass of the ejected material is much smaller than the mass of Dimorphos.

(15 points)

(c) Calculate the velocity change (in mms−1) of Dimorphos as a result of the impact, taking
into account the effect of the ejected debris.

(5 points)

(Total: 40 points)
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Solution

Part (a)

Didymos’ mass is much larger than Dimorphos’ mass. Therefore, the radius of the orbit of
Dimorphos before impact, a, can be calculated from Kepler’s 3rd law:

GM

4π2
=

a3

P 2
,

and therefore:

a =

(
GMP 2

4π2

)1/3

= 1.2 km.

The orbital velocity of Dimorphos before impact was:

v0 =
2πa

P
= 0.176m/s. (2 points)

Let v′ be the Dimorphos velocity right after the collision. Using the law of conservation of
momentum, we have:

mv0 −msvs = (m+ms)v
′,

and:
v′ =

mv0 −msvs
m+ms

≈ v0 −
ms

m
vs,

where we used the fact that the mass of the spacecraft mass is much smaller than the mass of
Dimorphos.
We then use the vis-viva equation to calculate the semi-major axis of the orbit after collision a′:

(v′)2 = GM

(
2

a
− 1

a′

)
=

GM

a

(
2− a

a′

)
= v20

(
2− a

a′

)
,

so

2− a

a′
=

(
v′

v0

)2

=

(
1− ms

m

vs
v0

)2

≈ 1− 2ms

m

vs
v0

.

Thus, the semi-major axis changed by:

∆a

a
=

a′ − a

a
= −2ms

m

vs
v0

. (8 points)

If the semi-major axis changes from a to a + ∆a, then the orbital period changes from P to
P +∆P , and the mass of the spacecraft can be neglected. Then:

a3

P 2
=

(a+∆a)3

(P +∆P )2
=

a3(1 + ∆a/a)3

P 2(1 + ∆P/P )2
=

a3

P 2

(
1 +

3∆a

a
− 2∆P

P

)
,

hence:
∆P

P
=

3

2

∆a

a
.

Thus, the orbital period changes by:

∆P

P
=

3

2

∆a

a
= −3ms

m

vs
v0

(8 points)

We therefore expect that the orbital period of Dimorphos should decrease by 1.4%, that is, 10
minutes. (2 points)
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Alternative solution (requires better numerical precision)

v0 = 0.17622 m/s

v′ = 0.17662− 0.00082 = 0.17540 m/s

a′ = 0.99080a = 1192.5 m

P ′ = 705.4 min

Hence ∆P = 705.4 − 715.2 = −9.8 ≈ −10 min. I propose to grant full points ONLY if the
first four significant figures match the solution. If the first three significant figures match the
solution, grant 80% of the points. Otherwise (if the method is correct), grant HALF of the
points.

Part (b)

Let ∆p be the momentum of the ejected debris. Then, the momentum conservation equation
becomes:

mv0 −msvs = (m+ms)v
′ +∆p, (4 points)

so:
v′ =

mv0 −msvs −∆p

m+ms
≈ v0 −

ms

m
vs −

∆p

m
.

Using similar calculations as in point a), we get:

∆a

a
= −2

(
ms

m

vs
v0

+
∆p

mv0

)
, (8 points)

hence:
∆P0

P
=

3

2

∆a

a
= −3

(
ms

m

vs
v0

+
∆p

mv0

)
.

Thus:
∆p

mv0
= −∆P0

3P
− ms

m

vs
v0

= 0.011. (3 points)

Alternative solution (requires better numerical precision)

The orbital period after the collision is P ′ = 11.92 − 33/60 = 11.37 h. Thus, the semi-major
axis of the orbit (after the collision) is

a′ =
(
GMP ′2

4π2

)1/3

= 1166m.

The velocity of Dimorphos right after the collision is v′ = v0
√

2− a/a′ = 0.1734m s−1, so
∆p/mv0 = 0.011. I propose to grant full points ONLY if the first four significant figures match
the solution. If the first three significant figures match the solution, grant 80% of the points.
Otherwise (if the method is correct), grant HALF of the points.

Part (c)

∆v = v′ − v0 = −ms

m
vs −

∆p

m
= −ms

m
vs +

∆P0

3P
v0 +

ms

m
vs =

∆P0

3P
v0 = −2.7mm/s.

(5 points)
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Theory 13: ‘LISA’

The Laser Interferometer Space Antenna (LISA) is a proposed experiment to detect low-frequency
gravitational waves. It consists of three spacecraft arranged in an equilateral triangle. A passing
gravitational wave changes the distance between the spacecraft, which can be precisely measured
(more details are given in the notes below).

One of the sources of low-frequency gravitational waves are compact binary star systems, for
example binary white dwarfs. Such a system was recently discovered at a distance of 2.34 kpc
from the Sun. The orbital period of the binary was found to be 414.79 s and is changing at a
rate of −7.49× 10−4 s yr−1 due to the emission of gravitational waves.

(a) Check if this binary system can be detected by LISA. (25 points)

(b) Calculate the chirp mass. (5 points)

(c) Determine the masses of both components knowing that the ratio between the radius of
one of the components to the semi-major axis of the orbit is 0.139, and assuming both
components follow the mass–radius relation for white dwarfs given in the table below.

(15 points)

(Total: 45 points)

Notes:

1. A binary star system with an orbital period P emits gravitational waves with a frequency
of f = 2/P .

2. LISA measures a dimensionless quantity called the characteristic strain amplitude, S, given
by

S = h
√
fTobs,

where Tobs = 4 yr is the expected duration of the mission. h is the gravitational wave
strain, given by:

h =
2(GM)5/3(πf)2/3

c4D
,

where M is the so-called chirp mass, f is the frequency of the gravitational wave and D
is the distance to the system. If we denote the masses of the components of the binary as
M1 and M2, then the chirp mass is given by:

M =
(M1M2)

3/5

(M1 +M2)1/5
.

The expected sensitivity of LISA as a function of a gravitational wave frequency is pre-
sented on the figure below.

3. The semi-major axis a of the binary system changes due to the emission of gravitational
waves at a rate:

∆a

∆t
= −64

5

G3

c5
M1M2(M1 +M2)

a3
.
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M (M⊙) R (R⊙)
0.48 0.0144
0.50 0.0147
0.52 0.0150
0.54 0.0153
0.56 0.0156
0.58 0.0159
0.60 0.0162
0.62 0.0165
0.64 0.0168

Mass–radius relation for white dwarfs based on theoretical models of Althaus et al. (2013) for
white dwarfs of logg = 7.7.

10−5 10−4 10−3 10−2 10−1 100

f [Hz]

10−21

10−20

10−19

10−18

10−17

10−16

10−15

S

The expected sensitivity of LISA as a function of gravitational wave frequency.
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Solution

Part (a)

To determine whether the system can be detected by LISA, we need to determine two quantities:
the gravitational-wave frequency and the characteristic strain amplitude.

It is straightforward to calculate the gravitational-wave frequency:

f =
2

P
=

2

414.79
= 4.8× 10−3Hz.

This frequency is within the LISA band and close to the maximum LISA sensitivity.

Calculating gravitational wave frequency 2 points

To estimate the characteristic strain amplitude, we need to know the chirp mass M. The other
required quantities (such as the gravitational wave frequency, distance, and duration of the LISA
observations) are already known.

The orbital period change rate ∆P/∆t is given in the problem. We need to link it to ∆a/∆t
which we know from Note 3 is linked to the mass function. From Kepler’s third law, we know
that:

a3

P 2
=

G(M1 +M2)

4π2
,

where M1 and M2 are masses of both components of the system. If, due to the emission of
gravitational waves, the semi-major axis changes from a to a + ∆a, then the orbital period
changes from P to P +∆P , as the masses of both components are constant. Then:

a3

P 2
=

(a+∆a)3

(P +∆P )2
=

a3(1 + ∆a/a)3

P 2(1 + ∆P/P )2
=

a3

P 2

(
1 +

3∆a

a
− 2∆P

P

)
,

hence:
∆P

P
=

3

2

∆a

a
.

Here, we used the fact that (1 + x)n ≈ 1 + nx for x ≪ 1.

Therefore:

∆P

∆t
=

3P

2a

∆a

∆t
= −3

2
· 64
5

P

a

G3

c5
M1M2(M1 +M2)

a3
= −96

5

G3

c5
P

a

M1M2(M1 +M2)

G(M1 +M2)P 2
· 4π2

= −96

5
(2π)2

G2

c5
M1M2

aP
= −96

5
(2π)2

G2

c5
M1M2

P

(2π)2/3

G1/3(M1 +M2)1/3P 2/3

= −96

5
(2π)8/3

G5/3

c5
M1M2

(M1 +M2)1/3
1

P 5/3
= −96

5
(2π)8/3

G5/3

c5
M1M2

(M1 +M2)1/3
1

P 5/3

= − 96

5c5
(2π)8/3

(
GM
P

)5/3

= −192π

5c5
(GM)5/3

(
P

2π

)−5/3

,

Thus, by knowing the orbital period and its rate of change from observations, we can determine
the chirp mass:

M =

(
5

192π

)3/5 c3

G

P

2π

(
−∆P

∆t

)3/5

= 0.319M⊙,

and find the characteristic strain amplitude h.
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Alternatively, if we notice that the characteristic strain amplitude h depends on (GM)5/3 which
we can get directly from the rate of change of the period:

(GM)5/3 = −∆P

∆t

(
P

2π

)5/3 5c5

192π
,

we can skip calculating the chirp mass and get the characteristic strain amplitude directly, which
is all we need to check if the binary can be detected.

Either way, the gravitational wave strain is:

h = − 5c

192π2
P
∆P

∆t

1

D
.

If we plug in the numerical values, we get h = 1.1 × 10−22 and S = 8.4 × 10−20. Checking
the plot, this is above the expected sensitivity of LISA at 5 mHz. Thus, this object should be
detected by LISA.

Calculating the chirp mass or (GM)5/3 as a function of P and ∆P/∆t 15 points
Calculating h and S 5 points
Correct conclusion – the system may be detected with LISA 3 points

Part (b)

To determine the masses of both components M1 and M2 we need two simultaneous M1 −M2

relations. The expression for the chirp mass:

M =
(M1M2)

3/5

(M1 +M2)1/5
,

gives us one relation, and we can calculate the chirp mass of the observed system from the rate
of change of the period, if that was not already done in part (a):

M =

(
5

192π

)3/5 c3

G

P

2π

(
−∆P

∆t

)3/5

= 0.319M⊙.

The second relation can be obtained from the mass–radius relation for white dwarfs given in the
table and Kepler’s third law.

We are told that for one of the components (call it ‘1’),

a =
R1

0.139
.

From Kepler’s third law we know that:

M1 +M2 =
( a

1 au

)3
(

P

1 yr

)2

,

which will give us the mass of the second component M2 from the mass of the first, M1.

From here, it is not possible to derive an analytical formula for the masses of the components.
Instead, we need to use numerical methods to estimate the result.

Taking the masses and radii listed in the given table as M1 and R1, we can obtain a and thus
M1 +M2, M2 and finally M for each mass:
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M1 (M⊙) R (R⊙) a (R⊙) M1 +M2 M2 M
0.48 0.0144 0.104 0.647 0.167 0.240
0.50 0.0147 0.106 0.689 0.189 0.261
0.52 0.0150 0.108 0.732 0.212 0.283
0.54 0.0153 0.110 0.776 0.236 0.306
0.56 0.0156 0.112 0.823 0.263 0.329
0.58 0.0159 0.114 0.871 0.291 0.354
0.60 0.0162 0.117 0.922 0.322 0.379
0.62 0.0165 0.119 0.974 0.354 0.405
0.64 0.0168 0.121 1.028 0.388 0.431

The actual chirp mass is M = 0.319M⊙. Therefore, by linear interpolation or graphically, we
estimate M1 = 0.55M⊙ and M2 = 0.25M⊙.
(The student does not need to calculate M for all values of M1.)

Graphical solution:

0.50 0.55 0.60
M1 (M�)

0.25

0.30

0.35

0.40

M
(M
�

)

Calculating the chirp mass 5 points
Deriving two M1 −M2 relations 5 points
Determining the masses of both components 10 points
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Data Analysis: Instructions

• Do not touch envelopes until the start of the examination.

• The data analysis examination lasts for 3 hours and is worth a total of 125 marks.

• There are Answer Sheets for carrying out detailed work and Working Sheets for rough
work, which are already marked with your student code and question number.

• Use only the answer sheets for a particular question for your answer. Please
write only on the printed side of the sheet. Do not use the reverse side. If you
have written something on any sheet which you do not want to be evaluated, cross it out.

• Use as many mathematical expressions as you think may help the evaluator to better
understand your solutions. The evaluator may not understand your language. If it is
necessary to explain something in words, please use short phrases (if possible in English).

• You are not allowed to leave your work desk without permission. If you need any assistance
(malfunctioning calculator, need to visit a restroom, etc.), please draw the attention of the
supervisor.

• The beginning and end of the examination will be indicated by the supervisor. The
remaining time will be displayed on a clock.

• At the end of the examination you must stop writing immediately. Put everything back
in the envelope and leave it on the table.

• Once all envelopes are collected, your student guide will escort you out of the examination
room.

• A list of constants and useful relations are included in the envelope.
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Data Analysis 1: ‘Distance to the Large Magellanic Cloud’

In 2019 an international collaboration led by Polish astronomers measured, with very high
precision and accuracy, the distance to the Large Magellanic Cloud (LMC), a satellite galaxy
of the Milky Way. In this way they set the zero point of the extragalactic distance scale,
which allowed for a very precise measurement of the Hubble constant. Their method involved
measuring the distances to 20 eclipsing binary stars in the LMC, using the concept of the surface
brightness SV of a star defined as:

SV = mV + 5 log10 θ,

where mV is the magnitude of a star in the optical V band and θ is the angular diameter of the
star on the sky in milliarcseconds (mas).

The quantity SV can be understood as the magnitude of a star with an angular diameter of
1 mas. An empirical relation has been established between SV and the colour index (mV −mK),
where mV and mK are magnitudes in the V -band and infrared K-band. This is shown in the
figure below for giant stars of spectral types G and K.

2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8
mV mK (mag)

5.4

5.6

5.8

6.0

6.2

S V
 (m

ag
)

Using this relation, the distance to an eclipsing binary system can be determined by deriving
the physical radii of the components (using photometry and spectroscopy), and comparing these
with the angular diameters predicted by the SV – (mV −mK) relation.

The table below gives the parameters of three detached eclipsing binary stars. R1 and R2 are
the radii of each component, V1+2 and K1+2 are the total brightness in magnitudes of the binary
in the V - and K-bands, and L2/L1 is the luminosity ratio of the components in each band.

source ID R1R1R1 [R⊙R⊙R⊙] R2R2R2 [R⊙R⊙R⊙] V1+2V1+2V1+2 [mag] K1+2K1+2K1+2 [mag] L2/L1L2/L1L2/L1 (VVV ) L2/L1L2/L1L2/L1 (KKK)
OGLE LMC-ECL-03160 17.03 37.42 16.73 14.10 2.80 4.23
OGLE LMC-ECL-10567 24.60 36.64 16.15 13.83 1.41 1.99
OGLE LMC-ECL-18365 37.30 15.94 16.27 14.01 0.206 0.188
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Apply the method outlined above to the three eclipsing binary systems and calculate the distance
to the LMC in kiloparsecs. Estimate the total error of the result. Assume that the fitting of the
SV – (mV −mK) relation contributes to a bias of up to 0.8% in all measurements simultaneously.

(Total: 50 points)

Hint: in your calculations keep at least three significant figures and two decimal places. Assume
that interstellar extinction is negligible and that the angular size of the LMC is small.
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Solution

Distance calculation

The information from the table can be used to derive individual magnitudes of both compo-
nents according to equations:

m1 = m1+2 + 2.5 log10(1 + L2/L1)

m2 = m1+2 + 2.5 log10(1 + L1/L2).

We will use the third system (OGLE LMC-ECL-18365) as an example to demonstrate the
calculations in detail. The values for this system are as follows:

Magnitudes: mV,1 = 16.47 mag, mK,1 = 14.20 mag, mV,2 = 18.19 mag, mK,2 = 16.01 mag.
Colours: (mV −mK)1 = 2.27 mag, (mV −mK)2 = 2.18 mag.

The second step is to determine the surface brightness SV for both components using the
figure. A least square fit to the data in the figure results in a linear function:

SV = 1.346 ((mV −mK)− 2.407) + 5.869 [mag], or

SV = 1.346(mV −mK) + 2.629 [mag].

Uncertainties of the coefficients are 1.346 ± 0.017 mag and 2.63 ± 0.04 mag.
For this system, this gives SV,1 = 5.69 mag and SV,2 = 5.57 mag.

However, participants will have two other ways of determining SV .
1) The first way is a graphical way by using a ruler and a pencil in order to draw the ’best-fit’
line on the figure. Then SV follows from an intersection of the x = (mV −mK) vertical line and
the ’best-fit’ line.
2) The second way is to determine the coefficients of the best-fit line y = ax + b by using
coordinates of two points on the figure. The points should be far from each other.
For example, the coordinates of the second and the penultimate points are: (x1, y1) = (2.07,
5.41) and (x2, y2) = (2.71, 6.28). This results in:

a =
y2 − y1
x2 − x1

= 1.36

b =
y1x2 − y2x1
x2 − x1

= 2.60

Using these coefficients we have: SV,1 = y = 2.27 · a + b = 5.69 mag and SV,2 = y =
2.18 · a+ b = 5.56 mag, so within 0.01 mag of the ’precise’ results.

The third step is to calculate angular diameters of components by using the equation pre-
sented in the problem. By modifying the equation defining SV we obtain:

θ = 100.2(SV −mV )

Subsequently we get: θ1 = 100.2(5.69−16.47) = 0.00698 mas and θ2 = 100.2(5.56−18.19) = 0.00298
mas.

The fourth step is to calculate the distance to each target. As components form a physical
binary, their distances should be very similar. This is an independent check of the method and
calculations. As the angles under which we see stellar discs are very small (sin θ ≈ θ) we can
safely use a linear relation between the angular and physical diameters of an object. We therefore

43



calculate the distance D as D = kR/θ, where θ is expressed in mas, R in solar radii and k is a
conversion factor. The conversion factor results from a fraction (2R⊙/1 kpc)/(1 mas/1 rad) =
(2R⊙/1 AU) = 9.30 · 10−3.

The distances for the third system are D1 = 9.30 · 10−3 · 37.30/0.00698 = 49.70 kpc and
D2 = 9.30 · 10−3 · 15.94/0.00298 = 49.75 kpc.

We then repeat the calculation following the same scheme for the first and second systems,
obtaining for the first system D1 = 49.33 kpc and D2 = 49.07 kpc, and for the second system
D1 = 49.56 kpc and D2 = 49.30 kpc. The unweighted mean of all distances is 49.45 kpc.

Uncertainties

’Statistical’ part.
The standard deviation of the sample is s = 0.24 kpc. The standard error of the mean is s/

√
6

= 0.09 kpc.
OR:
The mean distances to the three eclipsing binaries are: 49.73 kpc, 49.20 kpc and 49.443 kpc.
The standard deviation is s=0.22 kpc, and the standard error of the mean is s/

√
3=0.13 kpc.

’Systematic’ part.
All distances are inversely proportional to angular diameters derived from the SV – (mV −
mK) relation. Thus their accuracy is limited by the precision of the relation. That gives the
’irreducible’ part of the error: 0.008 · 49.45 = 0.40 kpc.

Finally: the distance is 49.45± 0.09± 0.40 kpc; the uncertainty is completely dominated by
the precision of the SV – (mV −mK) relation.

Author’s suggestion of scoring

A full proper solution is scored with 50 points.

Individual scores:
Correct formulas for individual magnitudes: 4 p
Derivation of V and K magnitudes for 6 components: 6 p
Determination of the trend line of Sv from the figure (by line fitting or by ruler): 7 p
Calculation of the SV quantity for 6 components: 6 p
Correct formula for angular diameter: 2 p
Determination of angular diameters of 6 components: 6 p
Correct formula for the distance calculation 4 p
Calculation of distances to 6 components: 6 p
Calculation of the final distance: 3 p
Errors: ’statistical’: 3 p
Errors: ’systematic’: 3 p
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Data Analysis 2: ‘Isolated black hole’

In 2022, two independent groups reported the discovery of an isolated black hole based on
observations of the gravitational microlensing event OGLE-2011-BLG-0462. In this problem, we
will analyze data from the Hubble Space Telescope to reproduce their findings.

Gravitational microlensing occurs when the light of a distant star (the ‘source’) is bent
and magnified by the gravitational field of an intervening object (the ‘lens’). The characteristic
angular scale of gravitational microlensing events, called the angular Einstein radius θE, depends
on the mass M and distance Dℓ from the Earth to the lens:

θE =

√
4GM

c2
Ds −Dℓ

DsDℓ
,

where Ds is the distance to the source star. For typical microlensing events observed in the
Milky Way, the source stars are in the Galactic bulge, near the Galactic center, so Ds ≈ 8 kpc.

(a) Calculate the angular Einstein radius in milliarcseconds (mas) for an example lens of 1M⊙
located at a distance of 1 kpc. (2 points)

Suppose that at time t the lens and the source are separated by an angle θ ≡ u(t)θE on the sky.
Two images of the source are created on a line through the positions of the source and the lens,
at angular distances θ+ and θ− from the lens given by:

θ± =
1

2

(
u±

√
u2 + 4

)
θE.

These two images are magnified, relative to the unlensed brightness of the source. The absolute
magnification of the images is:

A± =
1

2

(
u2 + 2

u
√
u2 + 4

± 1

)
.

The image below shows the geometry of the event. The position of the lens is marked as L, the
unlensed position of the source is marked as S, while A+ and A− mark the positions of the two
images of the source. The dashed circle has a radius of one Einstein radius.

θ
θ+

θ−

A+

A−
LS
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(b) Current telescopes cannot normally resolve this pair of images, but only measure the
position of the image centroid, i.e. the brightness-weighted mean of the positions of the
two images. Derive an expression for the angular separation θc of the image centroid
relative to the lens as a function of u and θE. (8 points)

(c) Derive an expression for the source deflection ∆θ, i.e. the difference between the location
of the centroid and the unlensed position of the source, as a function of u and θE. What
is the source deflection when the lens and the source are nearly perfectly aligned (u ≈ 0)?

(4 points)

The source and lens are moving relative to each other in the sky. Thus, both the total magnifi-
cation of the images and the position of the centroid changes with time, resulting in observable
photometric and astrometric microlensing effects. For now, we assume that the source-lens
relative motion is rectilinear.

The plot below shows the light curve of the gravitational microlensing event OGLE-2011-BLG-
0462, discovered by the OGLE sky survey led by astronomers from the University of Warsaw.
The solid line shows the best-fitting light curve model. The Einstein timescale of the event, i.e.
the time needed for the source to move by one angular Einstein radius relative to the lens, was
tE = 247 days. The event peaked on 21 July 2011 (HJD = 2455763). The minimal separation
between the lens and the source was u0 ≈ 0.
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The table below shows the measured positions of the source star against the background objects
in the East and North directions based on images from the Hubble Space Telescope.

HJD E position (mas) N position (mas)
2455765.2 2.58± 0.13 7.29± 0.16
2455865.7 2.32± 0.12 5.44± 0.24
2456179.7 0.46± 0.14 1.62± 0.08
2456195.8 0.88± 0.36 1.56± 0.77
2456426.2 −1.02± 0.21 −0.94± 0.12
2456587.7 −2.04± 0.07 −1.88± 0.40
2456956.6 −4.54± 0.25 −5.16± 0.29
2457995.2 −11.14± 0.12 −15.14± 0.17
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(d) Plot the measured positions of the source star against the background objects in the East
and North directions as a function of time. (10 points)

(e) The observed motion of the source star is the sum of two effects: rectilinear proper mo-
tion of the source and astrometric microlensing effects. Calculate the proper motion (in
mas/year) of the source and its uncertainty in the East and North directions. (8 points)

(f) After subtracting the effects of proper motion from the data, calculate and plot the total
resultant astrometric deflection as a function of u. Neglect the uncertainty of the proper
motion determination. (20 points)

(g) Analyse the data to determine the angular Einstein radius θE of the event and its uncer-
tainty. (Hint: it may be helpful to linearise the expression for ∆θ).

(16 points)

(h) For long-timescale events such as OGLE-2011-BLG-0462, the rectilinear approximation
of the relative lens-source proper motion is not strictly true and the orbital motion of
the Earth has to be taken into account. This allows measurement of a dimensionless
quantity called the microlensing parallax, defined as πE = (πl − πs)/θE, where πl and πs
are parallaxes of the lens and the source, respectively.

For this event πE = 0.095±0.009. Rearrange the expression for θE given earlier to calculate
the mass of the lens in solar masses and its uncertainty.

(7 points)

(Total: 75 points)
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Solution

(a)

θE =

√
4GM

c2
Ds −Dℓ

DsDℓ
=

√
4GM

auc2

(
au

Dℓ
− au

Ds

)
= 2.7mas

The angular resolution of modern large (D ≈ 10m) optical (λ = 550 nm) telescopes is
θ0 = 1.22λ/D ≈ 14mas. Thus, θ0 ≫ θE, so the images created during microlensing events
cannot be resolved by these telescopes.

(2 points)
(b)

θc =
θ+A+ + θ−A−

A+ +A−
=

1
4

(
u+

√
u2 + 4

)(
u2+2

u
√
u2+4

+ 1
)
+ 1

4

(
u−

√
u2 + 4

)(
u2+2

u
√
u2+4

− 1
)

u2+2
u
√
u2+4

θE

=

(
u+

√
u2 + 4

)(
u2 + 2 + u

√
u2 + 4

)
+
(
u−

√
u2 + 4

)(
u2 + 2− u

√
u2 + 4

)
4(u2 + 2)

θE

=
2u(u2 + 2) + 2u(u2 + 4)

4(u2 + 2)
θE =

2u(2u2 + 6)

4(u2 + 2)
θE =

u(u2 + 3)

u2 + 2
θE

(8 points)
(c)

∆θ = θc − θ =
u(u2 + 3)

u2 + 2
θE − uθE =

u(u2 + 3)− u(u2 + 2)

u2 + 2
θE =

u

u2 + 2
θE

(3 points)

∆θ(u = 0) = 0

so there is no deflection when the lens and the source are nearly perfectly aligned.
(1 points)

(d)
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(10 points, 5 points for each graph)
(e) I will use the fact that the first epoch of astrometric observations was taken close to the

peak of the light curve (that is, u1 ≈ 0, that is, almost no astrometric deflection). Similarly,
astrometric deflection is close to zero for the last epoch. Thus,
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µE ≈ xE,8 − xE,1

t8 − t1
= −2.247± 0.029mas/yr

µN ≈ xN,8 − xN,1

t8 − t1
= −3.674± 0.038mas/yr

(8 points)
No points should be given if a student does not recognize that the deflection is zero during the

first epoch, e.g., they try fitting a straight line to all data points.
(f) I fitted a straight line joining the first and last epoch data and then subtracted it from

astrometric measurements. This is because the observed path of the source on the sky is the
sum of two effects: the rectilinear proper motion of the source and the astrometric deflection:

x(E) = xE1 + (t− t1)µE +∆θ(E)

x(N) = xN1 + (t− t1)µN +∆θ(N),

where xE1 is the East position of the source during the first epoch, xN1 is the North position of
the source during the first epoch, t1 is the time of the first observation, and ∆θ(E) and ∆θ(N)
is the astrometric deflection due to microlensing in East and North direction, respectively.
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Figure 7: The blue lines join the first and the last epoch data points. The source would move
along these lines if there wasnt’t any black hole in front of it. However, the position of the source
that was observed is deflected due to microlensing effects by the black hole.

Thus, the astrometric deflection during ith epoch is:

∆θ(E)i = xEi − xE1 − (ti − t1)µE

∆θ(N)i = xNi − xN1 − (ti − t1)µN

and the total deflection is:
∆θi =

√
∆θ(E)2i +∆θ(N)2i .

I will also use the fact that u0 ≈ 0, so u = (t− t0)/tE , where t0 = 2455763 is the peak time.
Results of my calculations are shown in the table below.
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Figure 8: These figures show the astrometric deflection in East and North directions induced by
the black hole. (Students are not required to make these plots.)
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Figure 9: Total astrometric deflection as a function of u. Students are asked to make this plot
in part (f).

Epoch u ∆θ (E,mas) ∆θ (N,mas) ∆θ (mas)
1 0.01 0.00± 0.13 −0.00± 0.16 0.00± 0.21
2 0.42 0.36± 0.12 −0.84± 0.24 0.91± 0.27
3 1.69 0.43± 0.14 −1.50± 0.08 1.56± 0.16
4 1.75 0.95± 0.36 −1.40± 0.77 1.69± 0.85
5 2.69 0.47± 0.21 −1.58± 0.12 1.65± 0.24
6 3.34 0.44± 0.07 −0.90± 0.40 1.00± 0.41
7 4.83 0.21± 0.25 −0.47± 0.29 0.51± 0.38
8 9.04 0.00± 0.12 −0.00± 0.17 0.00± 0.21

(20 points)
(g) We would like to fit the function ∆θ = u

u2+2
θE to the data. Thus, my “new” independent

variable would be x′ = u/(u2+2). Now, I would like to fit the function y′ = θEx
′, where y′ = ∆θ.

Thus

θE =

∑
y′ix

′
i/σ

2
i∑

x
′2
i /σ

2
i

± 1√∑
x

′2
i /σ

2
i

= 4.5± 0.4mas
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Alternative solution:
The gravitational deflection is described by the formula ∆θ = u

u2+2
θE. It can be demon-

strated that this function reaches a local maximum for u =
√
2 with ∆θmax =

√
2
4 θE = 0.354θE.

From the data, we can estimate the maximum deflection of ∆θmax = 1.59 ± 0.14mas. Thus,
θE = 4.5± 0.4mas.

(16 points)
(h)
Let πrel = πl − πs be the relative lens–source parallax. From the definition of the angular

Einstein radius we have

θE =

√
4GM

c2
Ds −Dl

DsDl
=

√
4GM

c2

(
1

Dl
− 1

Ds

)
=

√
4GM

c2au

(
au

Dl
− au

Ds

)
=

√
4GMπrel
c2au

.

From the definition of the microlensing parallax πrel = πEθE , so this equation becomes:

θE =

√
4GMπEθE

c2au
,

and hence

M =
θEc

2AU

4GπE
= 5.8± 0.8M⊙.

The uncerainty on M can be determined from the relation:

∆M

M
=

√(
∆θE
θE

)2

+

(
∆πE
πE

)2

(7 points)
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Grading

a Correct value of θE 2
b Correct formula 8
c Correct formula 4
d Correct plots (5 pts for each plot) 10
e Correct µE within 3σ 3

Correct µE within 5σ 1
Incorrect µE (> 5σ) 0
Uncertainty on µE 1
Correct µN within 3σ 3
Correct µN within 5σ 1
Incorrect µN (> 5σ) 0
Uncertainty on µN 1
No points should be given if the student does not recognize
that the deflection is zero during the first epoch

f Calculation of the impact parameter u for all epochs 4
Calculation of the total deflection 6
Calculation of the uncertainties 5
Graph 5
Grant full points if results are correct for 7 or 8 epochs
Grant 60% points if results are correct for 5 or 6 epochs
Grant 0 points if results are correct for 4 or less than 4 epochs

g Correct result with an estimate of the uncertainty 16
Correct results without the estimate of the uncerainty 8

h Correct result 7
TOTAL 75

Grading of the graphs:

• Students can get 5 pts for each correct graphs

• data points with error bars 3 pts

• axis labels with units, tick labels - 1 pts

• graph is clear, fills the entire area - 1 pts

Grant full points if the graph shows correct data for 7 or 8 epochs. Grant 60% points if the
graph shows correct data for 5 or 6 epochs. Grant 0 points if the graph shows 4 or less than 4
epochs.
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Observation Round: Procedure

You have 30 minutes to read the questions and plan your observations. Do not talk to other
participants. When you are shown the sign to ‘GO NOW’ by the supervisor, follow the directions
to the telescope location taking with you the questions, clipboard and pen/pencil (a red light
will be provided at the telescope). Keep your distance from other participants and do not talk
to them. Show your badge and code to the assistant at your telescope.

You will have a total of 30 minutes to complete the observing tasks, starting when all participants
are ready. At the end of 30 minutes take your papers and clipboard (leave the light) and wait
until called to leave the observing location.

Follow the directions back to the preparation hall. Keep your distance from other participants
and do not talk to them.

You will have another 30 minutes to process your observations and complete the answer sheet
(there will be a calculator, geometrical instruments etc.). If you had any technical problems
you can write a report for your team leader on the form in the answer sheets. At the end of
30 minutes place your answer sheets and the report in the envelope and wait at your desk until
directed to leave the hall.
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Observation Round: General Instructions

Scientists have discovered a crashed alien flying saucer. High up inside the hold, they found
several screens transmitting views of the sky and telescopes have been set up to let you see them
clearly from the level of the deck. Use your telescope to observe the (simulated) targets on the
screens and record your results.

There are 5 screens on the opposite side: the central one will display video for tasks 1 and 2, the
other four will display static images for tasks 3 and 4. The two screens closer to the centre will
display the (same) image for task 3, and the two outer screens will display the (same) image for
task 4. Point your telescope at the screens furthest away from you.

You will have a total of 30 minutes to complete the observing tasks, however tasks 1 and 2 will
only be displayed once: just as with real observations you will only have one opportunity to
collect the data. There will be two clocks visible showing the time remaining in the round.

At the start of the round a clock on the central screen will show the simulated time at the
observer’s location. The clock will have the correct orientation when seen through the telescope.
The time will be shown for 3 minutes after which it will disappear; use this to set a start time
for your observations.

Caution: the scale of the field of view is different between the video and still images.
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Observation 1: ‘Asteroid occultation’

Calculations based on the orbital elements predict that an asteroid will occult the star HD 163390
for 21 s, with the maximum occultation (mid-time) occurring at 23:03:32 UT. However, the
ephemeris is not perfect and the prediction may be wrong by up to 20 s for the time and by 10s
for the duration.

Based on your observations, find the true mid-time and duration of the occultation. To identify
the star use Map 1 and the following coordinates:

HD 163390 RA: 17h 58m 05s DEC: -18◦ 50′ 46.14′′

The map and the sky are in the same epoch.

(15 points)

Answer Sheet

Mid-time of occultation ± error Duration of occultation ± error
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Solution

Beginning of occultation: 23:03:31
End of occultation: 23:03:48
Mid-time of occultation ± error Duration of occultation ± error

23:03:39.5 0.4 s 17 s 0.2 s

Marking

1. Mid-time t of occultation:

• 23:03:39.3 ≤ t < 23:03:39.7 =⇒ 4 points

• 23:03:39.0 ≤ t < 23:03:39.3 or 23:03:39.7 < t ≤ 23:03:40.0 =⇒ 3 points

• 23:03:38.0 ≤ t < 23:03:39.0 or 23:03:40.0 < t ≤ 23:03:41.0 =⇒ 1 points

• outside this range =⇒ 0 points

2. Error in mid-time ∆t:

• 0.1 < ∆x ≤ 0.5 =⇒ 3 points

• 0.5 < ∆x ≤ 0.7 =⇒ 2 points

• 0.7 < ∆x ≤ 1.0 =⇒ 1 point

• outside this range or missing =⇒ 0 points

3. Duration x of occultation (should be to 1 s.f.):

• 16.8 s ≤ x ≤ 17.2 s =⇒ 4 points

• 16 s ≤ x < 16.8 s or 17.2 s < x ≤ 18 s =⇒ 3 points

• 15 s ≤ x < 16 s or 18 s < x ≤ 19 s =⇒ 1 points

• outside this range =⇒ 0 points

4. Error in duration ∆x:

• 0.05 < ∆x ≤ 0.2 =⇒ 3 points

• 0.2 < ∆x ≤ 0.4 =⇒ 2 points

• 0.4 < ∆x ≤ 1.0 =⇒ 1 point

• outside this range or missing =⇒ 0 points

5. Error of duration lower than and different from error in mid time (∆x < ∆t) =⇒ 1 point
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Observation 2: ‘Starlink’

In the same star field as for Question 1, a ‘train’ of Starlink satellites will appear near the
meridian of 17h 59m at around 23:05 UT. Their passage will last for around three minutes.

You may assume that the centre of the star field is at an altitude of 20◦ and that the satellites
are 400 km above the Earth’s surface moving on circular orbits with equal distances between
them. You may also assume that satellites will move vertically (perpendicular to the horizon).

(a) Measure the angular velocity of the satellites as seen by an observer on the simulated sky.

(b) Measure the time interval between the passes of successive satellites and mark their path
on the sky chart (Map 1).

(c) Calculate the theoretical angular velocity of the satellites as seen by the observer, using
the information given in the question.

(d) Estimate the distance in km between two consecutive satellites.

Constants: G = 6.674× 10−11Nm2kg−2; MEarth = 5.972× 1024kg ; REarth = 6378km.

(15 points)

Solution

The satellites are at an altitude h = 20◦ and their height above the surface of the Earth is
H = 400 km.

1) In the (simplified) solution neglecting the Earth’s curvature, the student will assume the
distance to the satellites is equal to:

dflat =
H

sinh
= 1170 km

2) In the solution taking into account the Earth’s curvature, let us draw the OSC (observer–
satellite–center of the Earth) triangle. The angles are: ∡COS = 90◦ + h, ∡OSC that we shall
denote as η, and ∡SCO = 180◦ − (90◦ + h)− η = 70◦ − η.

The law of sines can be applied:
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sin(90◦ + h)

R⊕ +H
=

sin η

R⊕
=

sin(70◦ − η)

dcurve

We calculate the distance to the satellites:

η = arcsin

(
R⊕

R⊕ +H
sin(90◦ + h)

)
= 62◦, 2

dcurve = R⊕
sin(70◦ − η)

sin η
= 980 km

Knowing the radius of the orbit is R⊕ +H, we calculate vorbit =
√
GM⊕/(R⊕ +H) = 7.6

km/s. The observer can only measure the tangential component of motion vt.

The student will estimate the angular velocity to be vt/d = vorbit sinh/d = 2.2 · 10−3[1/s] =
7.6[′/s] (for the solution neglecting the Earth’s curvature) or 2.6 · 10−3[1/s] = 9.0[′/s] (for the
solution taking into account the Earth’s curvature).

5 points for predicting the angular velocity:
5 points if within 8.55− 9.45[′/s];
4 points if within 8.1− 9.9[′/s]);
3 point if within 7.5− 10.5[′/s];

0 points otherwise

The simulated angular velocity is 8.5[′/s]; the student should conclude this value is similar
to their prediction2.

4 points for measuring the angular velocity:
2or optionally comment it is slightly lower and might imply e.g. the real orbit radius is minimally larger than

predicted, but it is not necessary
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4 points if agrees within 5% (8.1 - 8.9 [′/s]);
2 points if agrees within 10% (7.65 - 9.35 [′/s]);

0 points otherwise

1 point for correct comparison

The student should then measure the time interval between the passes to be t = 2 s.

2 points for measuring the time interval:
2 points if agrees within 5% (1.9 - 2.1 s); 0 points otherwise

In such a short time, the path along the orbit can be approximated with a straight line; the
distance passed is S = vorbitt = 15 km, which is the distance between the satellites. (Alterna-
tively, if the student chooses to use their own vt measurement, S = vtt/ sinh = 14 km).

2 points for calculating the distance
2 points if within 13.8-15.2 km
1 point if within 12.5-16.5 km

0 points otherwise

Finally, the student should mark the observed satellite path on the sky map.

1 point for correctly marking the satellite trail
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Observation 3: ‘Planetary Moons’

The screen will display an image of one of the planets of the Solar System as seen on August
15, 2023, at 00:00 UT. Identify any five moons and mark them on the answer sheet (you may
use the moon position chart attached below and the table showing their brightness).

(10 points)

The moon position chart. The numbers on the left indicate the days of August 2023 (at
midnight UT).
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The moon position chart – moon numbers (I, II, . . . ) as above.

Number Name Magnitude
I Mimas 13.0
II Enceladus 11.8
III Tethys 10.4
IV Dione 10.6
V Rhea 9.9
VI Titan 8.5
VII Hyperion 14.4
VIII Japetus 11.0
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Answer sheet

Mark the positions of any 5 moons with a dot on the following image and label them with their
numbers (I, II, . . . ).

Solution

2 points for each moon: position (1 pt) and name (1 pt).
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Observation 4: ‘Supernova’

The other screen presents the view of a galaxy and a bright (mag < 11) object which was not
visible previously. Estimate the right ascension (RA) and declination (DEC) coordinates of this
star and estimate its magnitude. You may use Map 2, with stellar coordinates and a list of
magnitudes.

(10 points)
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Answer Sheet

Right ascension Declination est. magnitude

Solution

Right ascension Declination est. magnitude
9h 55m 54s +69◦ 09′ 11′′ 10.2 mag

1. Declination:

(a) < ±1.5′ =⇒ 4 points

(b) ≤ ±3′ =⇒ 2 points

(c) > ±3′ =⇒ 0 points

2. Right ascension:

(a) < ± 22.5 s =⇒ 4 points

(b) ≤ ± 45 s =⇒ 2 points

(c) > ± 45 s =⇒ 0 points

3. Magnitude:

(a) < ± 0.4 mag =⇒ 2 points

(b) ≤ ± 0.8 mag =⇒ 1 points

(c) > ± 0.8 mag =⇒ 0 points
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Planetarium Round: Procedure

You will have 30 minutes to read the questions and prepare, 30 minutes inside the planetarium
and 30 minutes to process your observations and complete the answer sheet.

The preparation area is outside the planetarium. Go to the table matching the name of your
team for the Group Competition. It will also be marked with the sector, row and seat number
assigned to you inside the planetarium.

Open the envelope only when the supervisor gives the command to ‘START’. You have 30
minutes, the supervisor will give the remaining time e.g. “10 minutes left”, “2 minutes left”. On
the command ‘STOP’, stop working but do not leave your place until you are shown the ‘GO
NOW’ sign. Take only your question papers, clipboard and pen/pencil (leave the atlas). Follow
the directions into the planetarium keeping your distance from other participants and take your
place. Do not talk to other participants.

During the tasks you may stand up to get a better view, but do not move around, change seats,
talk to other participants, or shine your light at others or at the sky. The light must be
pointed down at all times.

The round is in 3 parts of 10 minutes each. The first part is for task 1. The second part is for
task 2. The third part is for task 3. At 5, 2 and 1 minute before the end a warning will appear
briefly on the sky.

At the end of the round wait in your seat until shown the ‘GO NOW’ sign. Follow the directions
to the processing area and find the table matching your team as before (leave the light). Keep
your distance from other participants and do not talk to them. After everybody is seated you
will have 30 minutes to process your observations and complete the answer sheet (there will be
a calculator, geometrical instruments etc. and a clock displaying the remaining time). At the
end of 30 minutes place your answer sheets in the envelope and wait at your desk until told to
leave the area.
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Planetarium Round 1: ‘Knowledge of the sky’

The projector will display the sky as seen from near the equator (0◦N, 19◦E). The rotation of
the sky will be stopped for about 2 minutes for part (a), then it will start to rotate for parts (b)
and (c). The objects for parts (b) and (c) will be displayed simultaneously.

(Projection time 10 minutes)

(a) A meteor shower will be visible in the sky. Determine the constellation of the radiant and
estimate its right ascension and declination coordinates.

Constellation right ascension declination

(3 points)

(b) Identify which of the following variable stars visible in the sky are in low (write ‘DIM’) or
high (write ‘BRIGHT’) brightness states. The mean magnitude as shown in the atlas and
the magnitude range are given for each star.

Name atlas mag. mag. range DIM / BRIGHT
γ Cas (Cih) 2 1.6 — 3.0
δ Cep 4 3.5 — 4.4
µ Cep (Erakis) 4 3.4 — 5.1
β Per (Algol) 2 2.2 — 3.4
o Cet (Mira) 3.5 2.0 - 10.1
χ Cyg 4.5 3.3 - 14.1

L2 Pup 4.5 2.6 — 6
δ Sco (Dschubba) 2 1.6 — 2.3

(8 points)

(c) Identify the constellations whose borders are marked and give their IAU abbreviations.

(9 points)

(Total: 20 points)
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Solution

(a) 1 point for each field (total 3)

Constellation right ascension declination
Aqr 22:30 ± 0.5h −15◦ ± 8◦

(b) 1 point for each correct DIM/BRIGHT (total 8)

Name atlas mag. mag. range DIM / BRIGHT
γ Cas (Cih) 2 1.6 — 3.0 DIM
δ Cep 4 3.5 — 4.4 DIM
µ Cep (Erakis) 4 3.4 — 5.1 DIM
β Per (Algol) 2 2.2 — 3.4 DIM
o Cet (Mira) 3.5 2.0 - 10.1 BRIGHT
χ Cyg 4.5 3.3 - 14.1 BRIGHT

L2 Pup 4.5 2.6 — 6 BRIGHT
δ Sco (Dschubba) 2 1.6 — 2.3 BRIGHT

(c) Cet (1pt), Cae (1pt), Pup (1pt), Crt (1pt), Mus (1pt), Ser (2pt), CrA (1pt), Equ (1pt).
(total 9)
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Planetarium Round 2: ‘Retrograde Mars’

The projector will display Mars moving relative to the background stars over one season of
visibility (1.5 years) starting from the heliacal rising, chosen so that Mars will be at maximum
ecliptic latitude at opposition.

The ecliptic will also be displayed, marked with the positions of the Sun during the year and
the current date. The Sun will always be below the horizon.

Synodic period of Mars = 780 days.
(Projection time 10 minutes)

(a) Record the following quantities:

i. the dates of quadrature (when the elongation of Mars is 90◦)

ii. the date of the beginning of retrograde motion
and the date of the end of retrograde motion

iii. the date of opposition
iv. the ecliptic latitude at opposition
v. the width in ecliptic longitude of the loop made by the planet

(8 points)

Based on your observations and assuming the orbits of Earth and Mars are circular,

(b) On the answer sheet, mark the positions of the Sun, Earth and Mars at the moments
of opposition and quadrature in the heliocentric system and determine the radius of the
orbit of Mars in a.u. geometrically, without using Kepler’s Laws. Show your method in
the answer sheet.

(9 points)

(c) Derive the inclination of the orbit of Mars to the ecliptic. (3 points)

(Total: 20 points)
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Answer Sheet
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Solution

(a) 2 points for correct date of opposition and 1 point for each other answer (total 8)
i. the dates of quadrature (when the elongation of Mars is 90◦) 8 Nov 1915 ± 5 days

15 May 1916 ± 5 days
ii. the date of the beginning of retrograde motion 1 Jan 1916 ± 5 days

and the date of the end of retrograde motion 21 Mar 1916 ± 5 days
iii. the date of opposition 20 Feb 1916 ± 5 days
iv. the ecliptic latitude at opposition 4.5◦ ± 1◦

v. the width in ecliptic longitude of the loop made by the planet 19◦ ± 2◦

(b) radius 1.5 au.

(c) inclination 1.5◦.
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Planetarium Round 3: ‘TRAPPIST-1’

Aliens have found out that Earth’s astronomers discovered planets in the TRAPPIST-1 system
by observing numerous transits. They have used their flying saucer (similar to the one you were
in for the observation round) to take you to the 5th planet (designated f) of TRAPPIST-1,
and have asked you to show them the methods Earthlings use to uncover the parameters of the
system. A clock displaying time in Earth hours will be visible. The whole presentation lasts 520
h (1 s represents 1 h).

(Projection time 10 minutes)

Based on your observations (you can use the space on the last sheet for observing notes),

(a) determine the following quantities for the planet you are on (use Earth hours for the times):
(7 points)

i. length of the sidereal day [h]
ii. orbital period [h]
iii. length of the ‘solar’ day [h]
iv. circular orbit YES / NO
v. obliquity (axial tilt)

(b) and the following quantities for each planet b, c, d and e: (16 points)

b c d e

synodic period [h]
maximum elongation [◦]

(c) calculate the orbital period in hours and the semi-major axis in tau (where 1 tau = "TRAPPIST-
1f astronomical unit" = the semi-major axis of the orbit of TRAPPIST-1f) of each planet:

(8 points)

b c d e

orbital period [h]
semi-major axis [tau]

(d) The term ‘gravitational resonance’ is used to describe the phenomenon when ratio of the
orbital periods of two planets in a system is close to the ratio of two integers. The table below
lists some of the resonances observed in the TRAPPIST-1 system. Find which pair(s) of planets
correspond to each of the listed resonances if any.

(4 points)

Resonance Pair of planets
3:2
8:5
5:3
8:3
4:1
6:1

(Total: 35 points)
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Solution

(a)

i. length of the sidereal day [h] 221 ± 5
ii. orbital period [h] 221 ± 5 (the same)
iii. length of the ‘solar’ day [h] infinity
iv. circular orbit YES
v. obliquity (axial tilt) 0 (≤ 1◦)

For determining the orbital period – 3 points, for other quantities – 1 point each.

(b)

b c d e

synodic period [h] 43.6 ± 2 78.9 ± 2 173.5 ± 2 433.8 ± 2
maximum elongation [◦] 17.5 ± 2 24 ± 2 37 ± 2 49 ± 2

(c)

b c d e

orbital period [h] 36.2 ± 2 58.1 ± 2 97.2 ± 2 166.4 ± 2
semi-major axis [tau] 0.30 ± .02 0.41 ± .02 0.60 ± .03 0.75± .04

(d)

Resonance Pair of planets
3:2 e/d and f/e
8:5 c/b
5:3 d/c
8:3 d/b
4:1 e/b
6:1 f/b

Each resonance for 0.5 point, apart from f/e, which is worth 1 point.
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