
Задачи регионального тура олимпиады по химии 2023/24 уч.г. 9 класс

1. Тест (10 б)

Подкисление – это процесс, в результате которого среда водоема или почвы становится кислой. Подкисление может быть как естественным, так и вызванным действиями человека.

- а) Становится ли pH среды кислым, щелочным или остается нейтральным при добавлении следующих веществ в воду? SO_2 , SiO_2 , $Ba(OH)_2$, He, Li_2O , HNO_3 . (3) В химии окружающей среды используют различные единицы измерения концентрации.
- **b)** Переведи следующие единицы измерения: 200 г/кг = ... %; 53 нг/мл = ... кг/м³. (1) На рисунке ниже приведена лабораторная посуда, которая используется для проведения исследований окружающей среды.
- с) Напиши названия этой лабораторной посуды. (1,5)

В исследованиях окружающей среды часто нужно разделять смеси.

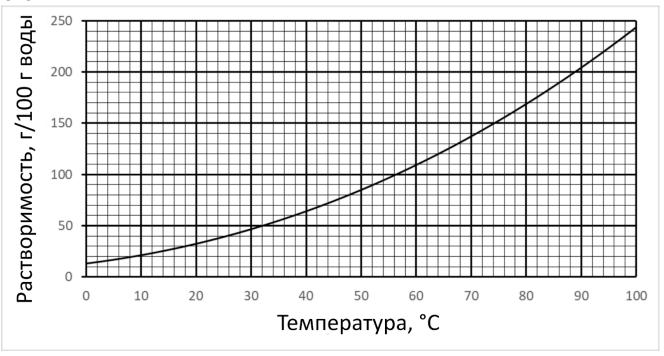
d) Какой метод разделения смесей нужно использовать, чтобы **i)** очистить раствор от частиц грязи; **ii)** отделить из раствора соли твердую соль? (1)

Известно достаточно много неорганических веществ-загрязнителей.

e) Назови каждое приведенное в списке вещество и определи его класс: H_2SO_3 , $NaNO_3$, NO_2 , TIOH. (2)

Таксол (суммарная формула $C_{47}H_{51}NO_{14}$) – это важное и широко известное природное соединение, которое используется для лечения рака.

- f) Посчитай молярную массу таксола. (0,5
- **g**) Рассчитай, сколько атомов водорода содержится в 0,5 моль дигидрата таксола $(C_{47}H_{51}NO_{14}\cdot 2H_2O)$. Знак умножения в формуле означает, что с каждой молекулой таксола связаны две молекулы воды. (1)


2. Дефицитное удобрение (10 б)

Юку хотел приобрести нитрат калия, который можно использовать в качестве удобрения, а также как исходное вещество для синтеза черного пороха. Однако нитрата калия не было в садоводческих магазинах и Юку решил синтезировать его самостоятельно. У Юку, как у очень большого фаната химии, конечно же дома хранилась азотная кислота, сульфат калия, нитрат кальция и карбонат калия.

- **а)** Напиши уравнение трех возможных реакций синтеза нитрата калия из исходных веществ Юку и расставь коэффициенты. (3)
- b) Если все исходные вещества имеют одинаковую чистоту, то какая из написанных в пункте a) возможных реакций даст самый "чистый", а какая самый "грязный" раствор нитрата калия? Поясни свой ответ. (2)
- c) Напиши еще одну реакцию получения нитрата калия, помимо описанных в пунктеa), используя любые исходные вещества.(1)

Для очистки нитрата калия, Юку решил использовать метод перекристаллизации. Очищаемый KNO_3 растворяют в минимальном количестве воды при высокой температуре. При охлаждении насыщенного раствора KNO_3 растворимость вещества снижается, и твердый KNO_3 выпадает в осадок в более чистом виде, а примеси в большей степени остаются в растворе.

Зависимость растворимости нитрата калия (г/100 г воды) от воды описана следующим графиком.

- **d)** При какой температуре концентрация насыщенного раствора KNO₃ равна 50%? (0,5)
- **e)** Во сколько раз растворимость KNO_3 при 94 °C выше, чем при 8 °C? (1,5)
- **f)** Рассчитай, сколько грамм воды должен взять Юку для полного растворения 130 г нитрата калия при 94 °C. (0,5)
- **g)** Рассчитай, сколько граммов нитрата калия выпадет в осадок, если раствор, полученный в пункте **f)**, охладить до 8 °C. (1)
- **h)** Какая роль у нитрата калия в черном порохе? (0,5)

3. Жидкое ракетное топливо (10 б)

В космических ракетах используются различные виды жидкого азотного топлива. Хранение и транспортировка жидкого топлива, по сравнению с твердым или газообразным, является более легким, что и является его важным преимуществом. Одним из известных примеров жидкого азотного топлива является гидразин (N_2H_4) . Гидразин можно производить путем реакции аммиака (NH_3) с пероксидом водорода (H_2O_2) . В этой реакции побочным продуктом является только вода.

- а) Напиши уравнение реакции получения гидразина и расставь коэффициенты. (1)
- **b)** Определи для уравнения, написанного в пункте **a)**, степени окисления азота и кислорода в исходных веществах и продуктах. (2)
- **с)** На бутылке с гидразином расположены пять знаков опасности, три из которых приведены ниже. Объясни, что означают данные знаки опасности. (1,5)

Помимо гидразина, как ракетное топливо, также используются и синтезированные из него химически более стабильные соединения. Например, 1,1-диметилгидразин, в структуре которого два атома водорода, связанные с одним и тем же атомом азота, замещены двумя метильными группами (-CH₃).

d) Нарисуй структурную формулу 1,1-диметилгидразина. Покажи явно все химические связи. (1)

Для окисления 1,1-диметилгидразина во время полета ракеты, обычно используется либо сжиженный кислород (реакция 1), либо тетраоксид диазота (реакция 2). В обоих случаях получается гипергольная смесь, т. е. смесь самовоспламеняющаяся при соприкосновении двух ее компонентов. В обоих случаях продуктами являются молекулярный азот, диоксид углерода и вода.

- **e)** Напиши уравнения **реакций 1** и **2**, и расставь коэффициенты. (2) Для ученых-ракетостроителей важно знать, какой окислитель использовать, чтобы сохранить массу ракеты максимально низкой.
- f) Найди массу окислителя, которая понадобится для реакций 1 и 2, если в реакцию вступает 10,0 кг 1,1-диметилгидразина. (2,5)

4. Изготовление чернил (10 б)

Железо образует с танинами (растворимые в воде полифенолы) соединения темного цвета, которые использовались для изготовления чернил со времен Древнего Рима и до второй половины 20-го века. Танины получали из подходящего природного материала, например из дубовой коры. Главным структурным элементом танинов является галловая кислота. Один из возможных рецептов для изготовления чернил уходит корнями в США 1935-го года, где для изготовления чернил следовало растворить 1,70 г галловой кислоты и 1,52 г сульфата железа(II) в 100 см³ воды. Для этого требовалось предварительно получить сульфат железа(II), который можно получить путем реакции железа и серной кислоты. Серную кислоту обычно синтезируют из диоксида серы, полученного сжиганием серы согласно уравнению реакции: $2SO_2 + 2H_2O + O_2 \rightarrow 2H_2SO_4$.

- **а)** Определи степень окисления серы в простом веществе, диоксиде серы и серной кислоте. (1,5)
- **b)** Напиши уравнение реакции разбавленной серной кислоты и железа и расставь коэффициенты. (1)
- с) Рассчитай, сколько см³ кислорода (при нормальных условиях) потребуется для получения обозначенного в рецепте количества сульфата железа(II) (1,52 г). Учти, что кислород необходим для получения как диоксида серы из серы, так и серной кислоты из диоксида серы, а также предположи, что кислород реагирует полностью и без потерь.

Молярная концентрация (c) показывает, сколько моль вещества содержится в 1 дм 3 раствора.

d) Рассчитай молярную концентрацию раствора сульфата железа(II) (c_{FeSO_4}), если 1,52 г сульфата железа(II) растворили ровно в 100 см³ воды. Предположи, что объем раствора равен объему растворителя. (1)

К полученному раствору сульфата железа(II) добавили раствор гидроксида натрия.

- **e)** Напиши уравнение реакции, протекающей при добавлении NaOH и расставь коэффициенты. (1)
- **f)** Рассчитай, сколько см³ раствора NaOH ($c_{\text{NaOH}} = 0.250$ моль/дм³) следует добавить к полученному в пункте **d)** раствору, чтобы все ионы железа выпали в осадок. (1,5) Суммарная формула галловой кислоты $C_7H_6O_5$.
- **g)** Приготовленными по данному рецепту чернилами, объемом 50 см³, исписали 1000 страниц. Рассчитай, сколько молекул галловой кислоты находится в среднем на одной исписанной странице. (2)

5. Аммиак и радиохимия в ЦЕРНе (10 б)

Аммиак (NH₃) – это газообразное хорошо растворимое в воде вещество, которое зачастую продается в виде 25,0%-ого водного раствора (ρ = 0,902 г/см³). Лаборант приготовил 3,0%-ный водный раствор аммиака.

а) Рассчитай сколько см 3 25,0%-ого водного раствора аммиака и сколько см 3 воды взял лаборант для приготовления 150 г 3,0%-ного водного раствора NH $_3$. Плотность воды 1,0 г/см 3 . (2)

Лаборант забыл закрыть бутылку 25,0%-ного водного раствора NH_3 и оставил ее в вытяжном шкафу на выходные. Когда лаборант снова пришел на работу, то концентрация аммиака в данном растворе уменьшилась.

- **b)** Какое свойство аммиака объясняет это явление? (0,5)
- **c)** Рассчитай, сколько моль NH₃ содержится в 1,00 дм³ 25,0%-ого водного раствора аммиака. (1,5)

Распространенность природных изотопов элементов, из которых состоит аммиак описана в следующей таблице (число перед символом элемента показывает массовое число).

Изотоп	¹⁴ N	¹⁵ N	¹H	² H
Распространенность в природе (% от всего количества атомов элемента)	99,6	0,4	99,99	0,01

(1)

- **d)** Рассчитай, сколько атомов ¹⁵N содержится в 1 моль аммиака.
- **e)** Рассчитай, сколько процентов от всех молекул аммиака содержат один атом ²H. (1) Команда ISOLDE в Европейской Организации по Ядерным Исследованиям (ЦЕРН) использует протонные ускорители в своих экспериментах по ядерной физике. Помимо прочего, для научной работы используются молекулы аммиака (¹³NH₃), содержащие радиоактивные изотопы ¹³N, которые производят в близлежащей больнице Генфи. В природе изотоп ¹³N присутствует лишь в ничтожно малом количестве.
- **f)** Сколько **i)** протонов и **ii)** нейтронов содержатся в ядре атома 13 N? (1) В изначально приготовленном водном растворе содержится $3.0 \cdot 10^{-12} \%$ 13 NH $_3$ (массовый процент).
- **g)** Рассчитай массу 13 NH₃ в пикограммах (пг) в 5,0 г раствора. 1 пг = 10^{-12} г. (1) Период полураспада 13 N $t_{1/2}$ = 10 минут (каждые 10 минут разлагается ровно половина от изначального количества радиоактивного 13 N).
- **h)** Рассчитай массовое содержание и массу ¹³NH₃ (в пикограммах) в растворе, который простоял 10 минут. Предположи, что радиоактивность не влияет на общую массу раствора. (1)
- Рассчитай, сколько процентов от изначального количества ¹³N останется спустя 30 минут (перевозки из больницы в ЦЕРН).