Открытые соревнования по решению химических задач

Старшая группа (11 и 12 класс) Кохтла-Ярве, Курессааре, Нарва, Пярну, Таллинн, Тарту 5 октября 2019

- **1.** (6 б) В 1869 году Д.И. Менделеев предсказал существование элементов **A** и **X**. На сегодняшний день, для того чтобы произвести чистый металл **A**, в первую очередь в качестве побочного продукта процесса Байера получают его оксид $\mathbf{A}_2\mathbf{O}_3$ (массовое содержание **A** $w_{\mathbf{A}}$ = 65,2%). В реакции с фтороводородом из этого оксида получают фторид **B**. После чего **B** восстанавливают кальцием в присутствии цинка с образованием сплава **A**-Zn ($w_{\mathbf{A}}$ = 25,6%). При нагревании сплава в вакууме цинк испаряется и остаётся металл **A** высокой чистоты.
- **а)** Определи элемент **A** при помощи расчётов. (1)
- **b)** Рассчитай формулу сплава **A**-Zn. (1)
- с) Расставь недостающие коэффициенты в уравнении реакции:

 $\mathbf{B} + \mathbf{Ca} + \mathbf{Zn} \rightarrow \{\mathbf{A}\text{-}\mathbf{Zn} \ \mathsf{cn}_{\mathsf{A}\mathsf{B}}\} + \mathbf{Ca}\mathsf{F}_{\mathsf{2}}.$ (1)

Металл **X** также получают как побочный продукт процесса Байера. В ходе этого процесса получают раствор, при электролизе которого на ртутном электроде образуется амальгама Na-**X**. При её реакции с водой образуются NaOH и гидроксид **Y** (wx = 57,7), которые затем реагируют друг с другом, образуя комплексное соединение. При электролизе раствора этого комплекса на электроде из никрома получают **X** высокой чистоты.

- **d)** Определи элемент **X** при помощи расчётов. (1)
- **e)** Напиши уравнение реакции **X** с водой. (1)
- f) Напиши уравнения реакций, происходящих на аноде и катоде, которые ведут к возникновению металла X высокой чистоты.
- **2. (11 б)** Нарисуй точечные структуры O_2 , CO, ClO^{\bullet} , O_3 , SO_2 , N_2O , I_3^- , BF_3 , NO_3^- , PO_4^{3-} и PCl_5 так, чтобы для элементов второго периода выполнялось правило октета, а формальные заряды имели наименьшие возможные значения. Согласно правилу октета, атом обменивается или делится электронами до тех пор, пока не получит восьми электронов. Формальный заряд атома = vucno валентных электронов в свободном атоме vucno несвязанных электронов в связанном атоме vucno несвязанных электронов в связанном атоме. Поделенные электронные пары (связи) обозначь черточкой, а неподеленные электроны точками.
- **3. (9 б)** Соль хрома **A** (с.о. Cr VI) возникает при реакции растворимого в воде оксида хрома **C** с раствором КОН. Соль вольфрама **B** (с.о. W VI) возникает при сплавлении нерастворимого в воде оксида вольфрама **D** с гидроксидом калия. Оксид **C** получают из соли **A** в ходе двухэтапной реакции под воздействием чистой серной кислоты. А оксид **D** получают в ходе окисления вольфрама кислородом при высокой температуре.
- **а)** Определи вещества **A-D**. (4)
- **b)** Заверши и уравновесь реакции получения **B**: **i)** W + KNO₃ + KOH \rightarrow KNO₂ + ; **ii)** W + KNO₃ + K₂CO₃ \rightarrow KNO₂ + ; **iii)** W + KO₂ \rightarrow ; **iv)** W + Ca(Cl)OCl + K₂CO₃ \rightarrow CaCl₂ + ; **v)** W + KMnO₄ + K₂CO₃ \rightarrow K₂MnO₄ +. (5)
- **4. (9 б)** Братья Каур, Яспер и Сандер отправились в гости к подруге Грете Т. Братья живут на расстоянии 5 км от дома подруги. Каур прошёл это расстояние пешком, Яспер доехал на электросамокате, а Сандер на машине с бензиновым двигателем. Каур шёл с равномерной скоростью 4,8 км/ч, при этом энергия необходимая для его передвижения составляла 17 кДж/мин. Яспер ехал со скоростью 15 км/ч и развил постоянную мощность в 170 Ватт. Расход бензина машины Сандера составляет 0,045 л/км и он, как примерный водитель, ездит по городу со средней скоростью 45 км/ч. В среднем Каур тратит на еду 78 € в неделю и с едой потребляет 7200 кДж энергии в день. Начальная цена у самоката Яспера равнялась 0,50 € и каждая следующая минута поездки стоила ему 0,10 €. Коэффициент полезного

действия для зарядки электросамоката равняется 50%, а для превращения энергии горения сланца в электроэнергию равняется 36%. Сандер покупает бензин с плотностью 0,71 г/см³ по цене 1,36 €/л. Каур, электросамокат Яспера и машина Сандера получают энергию из процессов окисления, которые можно упрощённо описать уравнениями:

Каур: $C_k(H_2O)_l + O_2 \rightarrow CO_2 + H_2O [17 кДж/г C_k(H_2O)]$ Электросамокат Яспера: $(CH)_m + O_2 \rightarrow CO_2 + H_2O [8,3 MДж/кг (CH)_m]$ Машина Сандера: $C_nH_{2n+2} + O_2 \rightarrow CO_2 + H_2O [32,7 MДж/дм³ C_nH_{2n+2}]$

У подруги в гостях братья вели беседы на многие темы. Среди прочего, они говорили о транспорте и не смогли прийти к согласию по поводу того, кто из них передвигается самым экологичным способом, и кто тратит на транспорт меньше всего денег. Ради прояснения ситуации они произвели приблизительные расчёты. Воспроизведи вычисления!

- а) Рассчитай, кто из братьев первым доедет до дома подруги. (1,5)
- **b)** Оцени, кто из братьев потратит меньше всего денег на визит к подруге. (3)
- с) Расставь недостающие коэффициенты в описанных выше уравнениях. (1,5)
- **d)** Оцени, кто из братьев образовал за время пути меньше всего CO₂. (3)
- **5. (9 б)** Методом радиоуглеродного анализа датируют материалы, содержащие углерод. Для определения возраста целесообразно привести все пробы к одинаковому состоянию, однако пробы, представляющие интерес чрезвычайно разнообразны. В случае с органическими пробами начинают с пиролиза пробу нагревают при температуре 750 °C в бескислородной среде.
 - 1) $C_x H_y O_z \rightarrow C + CO + CO_2 + H_2 O$

Далее продукты пиролиза реагируют с литием бескислородной среде.

2) $CO_2 + Li \rightarrow X + Li_2O$ 3) $C + Li \rightarrow X$ 4) $Li + H_2O \rightarrow LiOH + H_2$

Затем **X** (w_{Li} = 36,6%) и избыток лития подвергают гидролизу.

5) $\mathbf{X} + \mathrm{H}_2\mathrm{O} \rightarrow \mathbf{Y} + \mathrm{LiOH}$ 6) $\mathrm{Li} + \mathrm{H}_2\mathrm{O} \rightarrow \mathrm{LiOH} + \mathrm{H}_2$

Газ **Y** кристаллизуют при помощи жидкого азота, а образующийся водород выпускают из системы. В последнем этапе при 75 °C и наличии катализатора, оксида хрома (III), происходит реакция тримеризации вещества **Y**: 7) 3**Y** \rightarrow C₆H₆ (бензол).

- **а)** Напиши брутто-формулы веществ **X** и **Y**. (2)
- **b)** Расставь недостающие коэффициенты в уравнениях реакций 2, 3 и 5. (3)
 - 2) $CO_2 + Li \rightarrow X + Li_2O$

3) C + Li
$$\rightarrow$$
 X 5) X + H₂O \rightarrow Y + LiOH

В лаборатории радиоуглеродного анализа обрабатывали угольки из древнего поселения Пулли. Из 3,13 граммов угля синтезировали 2,53 миллилитра бензола (плотность 0,879 г/см³).

с) Посчитай процентный выход синтеза бензола из угля при условии, что уголь был чистым и сухим, а побочные 1, 2, 4 и 6 реакций не произошли.

Углерод-14 возникает в атмосфере под воздействием космического излучения и разлагается радиоактивно с периодом полураспада в 5730 лет, что означает, что по прошествии этого времени количество углерода-14 уменьшается ровно на половину. В слоях атмосферы, где образуется углерод-14, существует стабильное равновесие между изотопами углерода. В углероде же, который не находится в верхних слоях атмосфера (например, связан в органическом материале), запас углерода-14 постепенно истощается из-за β-распада последнего. Из этого следует, что по содержанию углерода-14 можно оценивать возраст материала.

В пробе угля из поселения Пулли измерили радиоактивность равную 31390 распадам в сутки. В качестве стандартного вещества используют бензол, возраст которого откалиброван и равняется 18634 годам, а радиоактивность равняется 12626 распадам в сутки. Согласно более ранним измерениям, поселению Пулли примерно 11000 лет.

d) Посчитай возраст синтезированного из пробы бензола. Подтверждают ли вычисления предыдущие результаты? (2)

6. (10 б) Адреналин или эпинефрин это известный гормон и нейромедиатор. Внутри тела он производится из аминокислоты тирозин, но его возможно также и синтезировать. Ниже приведён один из возможных методов синтеза, который начинается с пирокатехина или иначе бензол-1,2-диола (**A**). При переходе $\mathbf{B} \to \mathbf{C}$ происходит ацилирование по Фриделю-Крафтсу, а при переходе $\mathbf{E} \to \mathbf{F}$ гидрогенолитическое удаление защитной бензольной группы.

а) Нарисуй структурные формулы соединений А-F.

rac-адреналин

b) В ходе данного синтеза образуется рацемическая смесь энантиомеров. Внутри тела активен *R*-адреналин. Отметь у структуры адреналина хиральный центр звёздочкой и нарисуй структурную формулу *R*-адреналина, в который стереохимия данной молекулы обозначена пространственными связями. (2)

(6)

- с) Путь синтеза возможно сократить на один этап, если использовать в реакции с соединением С не N-метил-N-бензиламин, а метиламин. Однако в ходе этой реакции возникают и разнообразные побочные продукты. Нарисуйте структурные формулы двух возможных таких побочных продуктов.
- 7. (14 б) Увлечённый химией студент Юрий нашёл в библиотеке Chemicum'а захватывающий учебник по органической химии. Полистав учебник, он обнаружил главу про определение функциональных групп и принялся её читать. В ней говорилось о реакциях свойственных разным функциональным группам и о тестах, которыми эти группы подтверждают. Юрий попробовал решить задачи в конце главы. Юрий неплохо справился с задачами, но всё-таки некоторые детали он позабыл. Он помнил, что при возникновении вещества **A** (C₁₂H₁₄N₄O₅) выделяется вода, в веществе **B** ((C₂H₄NO₂)FeCl₂), содержащем гидроксильную и амидную группы, атом Fe скоординирован со свободной электронной парой кислорода карбонильной группы и то, что вещество **C** (C₁₁H₁₄O₃) это вицинальный диол.

2,4-DNPH тест

$$O_2N \longrightarrow N^{O_2} \longrightarrow N$$

а) Помоги Юрию определить структурные формулы соединений **A-C**. (3,5) Юрий решил не останавливаться только на теории. Он взял учебник и отправился в лабораторию, чтобы проверить свои знания. Юрий попросил местного лаборанта о помощи. Лаборант выбрал 14 органических соединений, из которых незаметно для Юрия отобрал 7 и разлил их по пробиркам **I-VII**. В качестве подсказки, лаборант показал Юрию структурные формулы всех 14 соединений:

Юрий принялся решать задачу спокойно и методично. Он составил подробную таблицу, куда занёс результаты тестов. Юрий считал результат теста положительным, если реакция произошла, а отрицательными, если она не произошла. Позитивные результаты он отмечал "+", а отрицательные "-".

№ пробирки	I	II	III	IV	v	VI	VII
2,4-DNPH тест	+	+	_	+	_	_	+
FH тест	_	_	_	_	+	+	_
Тест Байера	+	-	+	+	-	+	-
CAN тест	_	_	+	_	+	_	+
Тест Толленса	+	-	-	_	-	-	+

b) Определи, какие из соединений **1–14** были в пробирках **I–VII** и поясни коротко своё решение. (10,5)

8. (9 б) Однокомпонентные пенополиуретаны широко используются в строительстве в качестве утеплителя. Структуру такой пены определяют уретановые группы, которые возникают в реакции изоцианатной группы (R-NCO) с гидроксильной группой. В баллон с пеной добавляют с избытком диизоцианат и бленд (смесь полиолей и различных добавок). В ходе реакции возникает преполимер связанный уретановыми группами. При

использовании пены свободные изоцианатные группы реагируют с влагой воздуха, и пена затвердевает. К тому же изоцианат может начать реагировать с продуктом реакции R-NCO + H_2O – таким образом возникает мочевина. В ходе производственного процесса планировали смешать 6000 кг бленда по следующему рецепту: 16% полиола **A**, 23% полиола **B**, 19% наполнителя, 37% пластификатора, 4% стабилизатора и 1% катализатора. Однако во время дозировки веществ произошла ошибка и к концу процесса оказалось в бленде 8 кг избыточного катализатора. Ошибку решили исправить, добавив остальных веществ согласно пропорциям из рецепта, однако клапан автоматического дозирователя заклинило и вместо всех компонентов к смеси было добавлено лишь 380 кг полиола A.

- а) Закончи следующие уравнения реакций: i) R^1 -NCO + R^2 -OH → ; ii) R-NCO + H_2O → ; iii) R^1 -NCO + R^2 -NH₂ → . (3)
- **b)** Рассчитай, сколько кг бленда нужно приготовить соответственно рецепту. (1,5)
- **c)** Рассчитай, сколько кг каждого вещества нужно по рецепту добавить к полученной ошибочной смеси. (2,5)
- d) Вдобавок к изоционату и бленду, в баллон с пеной добавляют ещё и сжиженные газы (пропан, изобутан, диметиловый эфир) для того, чтобы давление в баллоне составляет примерно 6·10⁵ Па. Назови две причины того, почему это необходимо. (2)
- 9. (13 б) Очнувшись, МакГа́йвер обнаружил себя в подвале Мёрдока. Выход преграждала дверь из нержавеющей стали, которая была плотно закрыта. МакГа́йвер стал придумывать план побега и, немного осмотревшись, обнаружил шкаф, в котором Мёрдок ненароком оставил разнообразные взрывчатые вещества. В шкафу были: нитроглицерин (НГ), 2,4,6-тринитротолуол (ТНТ), 5-азидотетразолат натрия (NaCN₇) и странное соединение "азидоазид азид" (C₂N₁₄). Последних два соединения он не знал, однако найдя в подвале доску и мел МакГа́йвер решил освежить свои знания химии.
- **а)** Нарисуй 2 резонансные структуры азид-иона (N_3^-) . (1)
- **b)** Нарисуй 2 возможные структурные формулы тетразоля, если известно, что это 5звеньевый цикл с брутто-формулой СН₂N₄. (1)
- **c)** Нарисуй 2 структурные формулы тетразолят-иона (CHN_4^-). (1) Рядом с доской лежала статья про C_2N_{14} . МакГа́йвер прочитал, что вначале C_2N_{14} считали симметричной молекулой, однако позже обнаружили, что одна половина молекулы циклизируется и образует тетразолятный цикл.
- **d)** Закончи следующие уравнения реакций. Расставь недостающие коэффициенты, а также нарисуй графические структурные формулы продуктов. (8)

 $C_3H_8O_3$ (глицерин) + HNO₃ (избыток) \rightarrow HГ +

 C_7H_8 (метилбензол) + HNO₃ \rightarrow THT +

Br-C≡N + NaN₃ → NaCN₇ +

 $Br_2C=N-N=CBr_2 + NaN_3 \rightarrow C_2N_{14} +$

МакГа́йвер знал, что динамит содержит нитроглицерин, но не хотел его изготавливать, так как он знал, что опасно иметь дело с большим количеством чистого нитроглицерина. Он решил использовать ТНТ, так как он менее чувствительный и поэтому намного безопасней. Однако из-за этого ТНТ нуждается в первичном взрывчатом веществе, которое обладало бы достаточной взрывчатой энергией, чтобы ТНТ сдетонировал. МакГа́йвер решил использовать для этой цели небольшое количество NaCN₇.

- **e)** Проанализировав структуры нитроглицерина, ТНТ, NaCN₇ и C₂N₁₄, приведи 1 причину того, почему ТНТ намного стабильней, чем другие взрывчатые вещества. (1)
- f) Рассчитай, сколько граммов ТНТ должен использовать Макгайвер, если, по его оценке, для взрывания двери необходимо 5 МДж энергии или приблизительно пять динамитных шашек. Тепловая энергия детонации ТНТ равняется 4184 Дж/г. (1)